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On I-Fréchet-Urysohn spaces and sequential
I-convergence groups

V. Renukadevi, P. Vijayashanthi∗

Abstract. In this paper, we introduce the concept of sequential
I-convergence spaces and I-Fréchet-Urysohn space and study their prop-
erties. We give a sufficient condition for the product of two sequential
I-convergence spaces to be a sequential I-convergence space.

Finally, we introduce sequential I-convergence groups and obtain an
I-completion of these groups satisfying certain conditions.

1. Introduction

In [4], Hong introduced the notion of Fréchet spaces and sequential conver-
gence groups. It has been discussed and developed by many authors [3, 5].
We try to extend this concept on ideal topological spaces. A non-empty
collection I of subsets of a set X is said to be an ideal on X [7] if it satisfies
the following two conditions:

(i) A ∈ I and B ⊂ A⇒ B ∈ I.
(ii) A ∈ I and B ∈ I ⇒ A ∪B ∈ I.
A non-trivial ideal I is called admissible [2] if and only if I ⊃ {{x} | x ∈

X}. Several examples of nontrivial admissible ideals may be seen in [6].
Let (X, τ) be a topological space. A sequence (xn) in X is said to be
I-convergent to x0 ∈ X [7] if for any non-empty open set U containing
x0, {n ∈ N | xn /∈ U} ∈ I. It is denoted by (xn)

I−→ x0 and x0 is called
an I-limit of the sequence (xn). A topological space (X, τ) is I-Fréchet or
I-Fréchet-Urysohn space [9] if every point in the closure of a subset A of X
is a I-limit of a sequence of A. A mapping f : (X, τ)→ (Y, σ) is said to be
pseudo open [2] if whenever f−1(y) ⊂ U with U open in X, y ∈ int(f(U)).
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Let A ⊂ N. Put A(n) = {k | k ≤ n, k ∈ A}. Then we call δ(A) = lim
n→∞

inf
|A(n)|
n

and δ̄(A) = lim
n→∞

sup
|A(n)|
n

, the lower and upper asymptotic density

[8] of A, respectively. If δ(A) = δ̄(A), then d(A) = δ(A) = lim
n→∞

|A(n)|
n

is
called the asymptotic density (or natural density) of A.
This paper consists of four sections with new results. In Section 2, we
introduce the concept of sequential I-convergence spaces, I-Fréchet-Urysohn
spaces and study their properties. Recall that I-Fréchet and I-sequential
spaces are generalizations of statistical versions of Fréchet-Urysohn spaces
and sequential spaces considered in [1] and [11]. In Section 3, we give a
sufficient condition for the product of two sequential I-convergence spaces
to be a sequential I-convergence space. In Section 4, we introduce sequential
I-convergence groups and an I-completion of these groups satisfying given
condition (∗∗). Throughout this paper, we consider only an admissible ideal.
The following lemma will be useful in the sequel.

Lemma 1.1. [10] Let f : X → Y be a quotient mapping and X be an I-
Fréchet-Urysohn space. Then Y is an I-Fréchet-Urysohn space if and only
if f is pseudo open.

2. Sequential I-convergence spaces

Let X be a non-empty set and S[X] be the set of all sequences in X. We
use the notation xn

I−→ x for ((xn), x) ∈ LI . A non-empty subfamily LI of
S[X] × X is called a sequential I-convergence structure (SIC) on X if it
satisfies the following properties:
(SIC1) For each x ∈ X, ((x), x) ∈ LI , where (x) is the constant sequence

whose n-th term is x for all indices n ∈ N,

(SIC2) If ((xn), x) ∈ LI , then ((xni), x) ∈ LI for each subsequence (xni) of
(xn).

(SIC3) Let x ∈ X and A ⊂ X. If ((xn), x) /∈ LI for each (xn) ∈ S[A], then
((yn), y) /∈ LI for each (yn) ∈ S[{y ∈ X|((xn), y) ∈ LI for some
(xn) ∈ S[A]}].

If a sequential I-convergence structure LI on X is given, the pair (X,LI)
is called a sequential I-convergence space. Hereafter, we use the notation
SCI[X] for the set of all sequential I-convergence structures on X.
Let (X, τI) be a I-Fréchet-Urysohn space and let LτI denote the set of all
pairs ((xn), x) ∈ S[X]×X such that (xn)

I−→ x in (X, τI).

(i) Suppose for each x ∈ X, then ((x), x) ∈ LτI , where (x) is constant
sequence.
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(ii) Suppose ((xn), x) ∈ LτI then there exists a subsequence (xnk) of
(xn) such that ((xnk), x) ∈ LτI .

(iii) Let x ∈ X and A ⊂ X. Suppose that ((xn), x) /∈ LτI for each
(xn) ∈ S[A], then ((yn), y) /∈ LτI for each

(yn) ∈ S[{y ∈ X|((xn), y) ∈ LτI for some (xn) ∈ S[A]}].

Then, it is clear that LτI ∈ SIC[X] and two topological spaces (X, τI)
and (X,LτI ) are precisely same, since (X, τI) is a I-Fréchet-Urysohn space.
Hence every I-Fréchet-Urysohn space is a sequential I-convergence space.
And, for each LI ∈ SIC[X], define a mapping cLI of the power set P(X)
of X into itself as follows:

cLI (A) = {x ∈ X|((xn), x) ∈ LI for some (xn) ∈ S[A]}

The following Lemma 2.1 gives the properties of the operator cLI .

Lemma 2.1. Let (X, τ) be a topological space and A,B ⊂ X. Then the
following hold.

(a) cLI (∅) = ∅.
(b) A ⊂ cLI (A).
(c) cLI (cLI (A)) ⊂ cLI (A).
(d) A ⊂ B ⇒ cLI (A) ⊂ cLI (B).
(e) cLI (A ∪B) = cLI (A) ∪ cLI (B).

Proof. (a) cLI (∅) = ∅ is clear.
(b) Suppose x ∈ A, and consider (xn) = (x, x, ..., x).

Then (xn) ∈ S[A] and ((xn), x) ∈ LI . Therefore, x ∈ cLI (A).
(c) Suppose x ∈ cLI (cLI (A)), then there exists a sequence (xn) ∈ S[cLI (A)]

such that ((xn), x) ∈ LI . Suppose that x /∈ cLI (A). Then for each (yn) ∈
S[A], ((yn), x) /∈ LI . By (SIC3), ((xn), x) /∈ LI , which is a contradiction.
Therefore, x ∈ cLI (A). Hence cLI (cLI (A)) ⊂ cLI (A).

(d) Suppose x ∈ cLI (A), then ((xn), x) ∈ LI for some (xn) ∈ S[A]. Since
A ⊂ B, (xn) ∈ B and so x ∈ cLI (B). Therefore, cLI (A) ⊂ cLI (B).

(e) We have cLI (A) ∪ cLI (B) ⊂ cLI (A ∪B), by (d). Let x ∈ cLI (A ∪B).
Then ((xn), x) ∈ LI for some (xn) ∈ A∪B. Note that either A or B contains
infinitely many terms of (xn). If A contains infinitely many terms of (xn),
then there exists a subsequence (xnm) of (xn) in A with ((xnm), x) ∈ LI ,
by (SIC2). Therefore, x ∈ cLI (A). Similarly, x ∈ cLI (B). Hence x ∈
cLI (A) ∪ cLI (B). Thus, cLI (A ∪B) = cLI (A) ∪ cLI (B). �

Thus, cLI is a Kuratowski closure operator on X and (X, cLI ) is a I-
Fréchet-Urysohn space as it satisfies the above properties. Let L(cLI ) denote
the set of all pairs ((xn), x) ∈ S[X] × X such that (xn)

I−→ x in (X, cLI ).
By the following Example 2.1, LI $ L(cLI ), in general. Hence not every
sequential I-convergence space (X,LI) need be a I-Fréchet-Urysohn space
even if (X,LI) determines a I-Fréchet-Urysohn space (X, cLI ) as above.
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Example 2.1. LetQ be the set of all rational numbers and LI = {((x), x)|x ∈
Q}∪{((xn), x) ∈ S[Q]×Q|(xn)

I−→ x ∈ Q} with the usual topology and (xn)
is either increasing or decreasing }.

Let (xn) = ( 1
n) and (x) = (12 ,

1
2 , ...,

1
2 , ...). Then there is an open set U of

0 such that {n|(xn) = 1
n /∈ (U ∩ Q)} ∈ I where I = {J ⊂ N | d(J) = 0}.

Therefore, ((x), 12) ∈ LI satisfy (SIC1). Choose (xni) = (12 ,
1
4 , ..., ) of (xn).

Then ((xni , 0) ∈ LI satisfy (SIC2). Suppose (xn) = (−1, 1,−1, ..., ) does
not I-converge in LI but (yn) = {1 | (1, 1, ..., )

I−→ 1 for some (xn) ∈ S[Q]}.
Therefore, (SIC3) is satisfied. Thus, LI ∈ SIC[Q] but LI $ L(cLI ) =

{((xn), 0) ∈ [SQ]×Q | (xn)
I−→ 0 in Q with the usual topology}.

Lemma 2.2. Let LI ∈ SIC[X] and x ∈ A ⊂ X. If A is a neighbourhood
of x in (X, cLI ), then for each ((xn), x) ∈ LI , there is an open set U in
(X, cLI ) containing x such that {n | xn /∈ U} ∈ I.

Proof. Let A be a neighbourhood of x in (X, cLI ) and ((xn), x) ∈ LI . Then
there exists an open set U in (X, cLI ) such that x ∈ U ⊂ A. It follows
that cLI (X\U) = X\U, and there does not exist (yn) in X\U such that
((yn), x) ∈ LI , by the definition of cLI . Now we show that {k ∈ N | xk ∈
X\U} ∈ I. If {k ∈ N | xk ∈ X\U} /∈ I, then there exists a subsequence
(xni) of (xn) in X\U. Since ((xn), x) ∈ LI , ((xni), x) ∈ LI , which is a
contradiction. Therefore, {k ∈ N | xk ∈ X\U} ∈ I. �

Theorem 2.1. If LI ∈ SIC[X], then the following hold:
(a) LI ⊂ L(cLI ).
(b) cLI = cL(cLI )

.

Proof. (a) Let ((xn), x) ∈ LI . Then by Lemma 2.2, for each neighborhood
A of x in (X, cLI ), there is an open set U in (X, cLI ) such that {n | xn /∈
U} ∈ I. Therefore, ((xn), x) ∈ L(cLI ).

(b) Let A be a non-empty subset of X. Then by Lemma 2.1(b) and (d),
cLI (A) ⊂ cL(cLI )(A). Conversely, let x ∈ cL(cLI )(A). Then ((xn), x) ∈ L(cLI )
for some (xn) ∈ S[A]. By the definition of L(cLI ), (xn)

I−→ x in (X, cLI ).

Therefore, x ∈ cLI (A). �

Theorem 2.2. For each I-Fréchet-Urysohn topology τI on X, LτI = L(cLτI )

∈ SIC[X], where LτI = {((xn), x) ∈ S[X]×X | (xn)
I−→ x in (X, τI)}.

Proof. Note that cLτI is the closure operator for (X, τI). Since τI is an I-
Fréchet-Urysohn topology and LτI ∈ SIC[X], LτI ⊂ L(cLτI ), by Theorem
2.1. �

Corollary 2.1. Let FI [X] denote the set of all I-Fréchet-Urysohn topologies
on X and TSI[X] = {L(cLI ) | LI ∈ SIC[X]}. Then partially ordered sets
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FI [X] and TSIC[X] endowed with the set inclusion order are dual isomor-
phic under the correspondence τI → LτI .

Proof. Since cLτI is the closure operator for (X, τI), LτI1 = LτI2 implies
τI1 = τI2 . Hence this correspondence is one-to-one. Take any LI in SIC[X]
and let τcLI be the I-Fréchet topology on X with the closure operator cLI .
Then LτcLI = L(cLI ). Hence this correspondence is onto. �

Theorem 2.3. There exists an one-to-one correspondence between the set
of all I-Fréchet-Urysohn topologies on a set X and {cLI | LI ∈ SIC[X]}.

Proof. Follows from Corollary 2.1. �

3. Product of sequential I-convergence spaces

In general, the product of two sequential I-convergence spaces need not
be a sequential I-convergence space, but we give a sufficient condition for
the product of two sequential I-convergence spaces to be a sequential I-
convergence space. The following Example 3.1 shows that the product of
two sequential I-convergence spaces is not a sequential I-convergence space.

Example 3.1. Let X = R/Z, R is the real line (equipped with the usual
topology) with the integers identified and let I = [0, 1] be the closed unit
interval in the real line. Since I = {J ⊂ N | d(J) = 0} and every point in the
closure of I is an I-limit of a sequence of points of I, I is I-Fréchet-Urysohn
space. A quotient map φ : R→ X is pseudo-open. Hence by Lemma 1.1, X
is an I-Fréchet-Urysohn space. For each n ∈ N, let An = {(n− 1

k ,
1
n) | k ∈ N}

and let A =
⋃
{An mod n ∈ N}. Then (0, 0) ∈ Ā, but no sequence in A

I-converging to (0, 0). Hence X×I is not I-Fréchet-Urysohn. Next we show
that X × I is not a sequential I-convergence space. For each n, k ∈ N, let
znk = (n − 1

k+1 ,
1
n) and let A = {znk | n, k ∈ N}. Then for each n ∈ N,

(znk)
I−→ (0, 1n) in X × I and the sequence ((0, 1n))

I−→ (0, 0) in X × I. But
there does not exist a (znk) in A such that (znk)

I−→ (0, 0). Therefore, X × I
is not a sequential I-convergence space.

The following condition (∗) is sufficient for the product of two sequential
I-convergence spaces to be a sequential I-convergence space.

(∗) Let ((xn), x) ∈ LI and let ((xnm), xn) ∈ LI for each n ∈ N. It is
possible to choose a cross-sequence (xnm(n)) in the double sequence (xnm)
such that (i) ((xnm(n)), x) ∈ LI , (ii) m(n) ≥ n for all n ∈ N and (iii)
((xnk(n)), x) ∈ LI if k(n) ≥ m(n) for all n ∈ N.

(∗) implies (SIC3) Let ((xn), x) /∈ LI for all (xn) ∈ A and (yn) ∈ S[B]
where B = {y ∈ X|((Xn), y) ∈ LI for some (xn) in A}. Then yi ∈ B for
all i ∈ N and for each i, there exists (xni) ∈ S[A] such that ((xni), yi) ∈
LI . By hypothesis, ((xni), x) /∈ LI for all i. Suppose ((yn), y) ∈ LI , then
(i)((xni(n)), x) ∈ LI (ii)i(n) ≥ n for all n and (iii) ((xnk(n)), x) ∈ LI if
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k(n) ≥ m(n) for all n ∈ N, which is a contradiction to ((xni), x) /∈ LI for all
i. Therefore, ((yn), y) /∈ LI .

Example 3.2. Let LIQ = {((xn), x) ∈ S[Q] × R | (xn) I−converges to x
in the real line R}. By Example 2.1, (R, LIQ) is a sequential I-convergence
space satisfying (∗), but not an I-Fréchet-Urysohn space

Theorem 3.1. Let (X,LIX ) and (Y,LIY ) be any two sequential I-convergence
spaces satisfying (∗) and let

LIX × LIY = {((xn, yn), (x, y)) | ((xn), x) ∈ LIX and ((yn), y) ∈ LIY }

Then (X ×Y, LIX ×LIY ) is a sequential I-convergence space satisfying (∗).

Proof. Suppose that (xn) = (x), (yn) = (y). Then (X × Y, LIX × LIY )
satisfies (SIC1). Choose the subsequences (xni) and (yni) of (xn) and (yn),
LIX × LIY = {((xni , yni), (x, y)) | ((xni), x) ∈ LIX and ((yni), y) ∈ LIY }.
Thus, LIX ×LIY satisfies (SIC2). Since (∗) implies (SIC3), it is enough to
show that LIX × LIY satisfies (∗).

Let ((xn, yn), (x, y)) ∈ LIX × LIY and let ((xnm , ynl), (xn, yn)) ∈ LIX ×
LIY for each n ∈ N. Then, by the definition of LIX × LIY , ((xn), x) ∈
LIX , ((yn), y) ∈ LIY , ((xnm), xn) ∈ LIX for each n ∈ N and ((ynl), yn) ∈
LIY for each n ∈ N. Since (X,LIX ) and (Y,LIY ) satisfy (∗), there are two
cross-sequence xnm(n) and ynl(n) in the double sequences (xnm) and (ynl),
respectively, such that (i) ((xnm(n)), x) ∈ LIX and ((ynl(n)), y) ∈ LIY and
those cross-sequences also satisfy the properties (ii) and (iii), respectively.

Let p(n) = max {m(n), l(n)} for each n ∈ N. Then ((xnp(n)), x) ∈ LIX
and ((ynp(n)), y) ∈ LIY , and we obtain a cross-sequence (xnp(n), ynp(n)) in the
double sequence (xnm , ynl) such that (i) ((xnp(n)ynp(n)), (x, y)) ∈ LIX ×LIY ;
(ii) p(n) ≥ n for all n ∈ N; (iii) ((xnq(n), ynq(n)), (x, y)), for all n ∈ N. �

4. Sequential I-convergence groups

Definition 4.1. A sequential I-convergence space (X,LI) is called Haus-
dorff if LI satisfies the following property:

If ((xn), x) ∈ LI and ((xn), y) ∈ LI , then x = y.

Definition 4.2. Let (X,LI) be a Hausdorff sequential I-convergence space
satisfying (∗) and let · be a commutative group operator on X. The triple
(X, ·, LI) is called a sequential I-convergence group if it satisfies the follow-
ing property:

(SIG) For each ((xn), x) ∈ LI and ((yn), y) ∈ LI , ((xny
−1
n ), xy−1) ∈ LI .

Remark 4.1. Define a mapping φ of X × X onto (X, ·, LI) by taking
φ(x, y) = xy−1 for each (x, y) ∈ X × X. Then (SIG) is equivalent to the
following:

(SIG′) For each ((xn, yn), (x, y)) ∈ LI × LI , (φ(xn, yn), φ(x, y)) ∈ LI .
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Let (X, ·, LI) be a sequential I-convergence group. A sequence (xn) ∈
S[X] is called I-Cauchy if for each subsequences (xni) and (xnj ) of (xn),

((xnix
−1
nj ), e) ∈ LI where e is the identity element of the group (X, ·). Let

CI [X] denote the set of all I-Cauchy sequences in (X, ·, LI). A sequential
I-convergence group (X, ·, LI) is called I-complete if for each (xn) ∈ CI [X],
((xn), x) ∈ LI for some x ∈ X. Let (X, ·, LI) be a sequential I-convergence
group and let ∼ be an equivalence relation on CI [X] defined by (xn) ∼ (yn)
if and only if ((xniy

−1
nj ), e) ∈ LI for each subsequence (xni) of (xn) and each

subsequence (ynj ) of (yn). We denote the class of all I-Cauchy sequences
which are equivalent to an (xn) ∈ CI [X] by [(xn)].

In particular, for each constant sequence (x), x will be used for the equiv-
alence class [(x)]. Let X∗ = {[(xn)] | (xn) ∈ CI [X]} and φ : X → X∗ defined
by φ(x) = x for all x ∈ X. Then φ is injective and if (X, ·, LI) is I-complete,
then φ(x) = x for each (xn) ∈ CI [X]. Thus, φ is bijective. Define an (group)
operator ∗ on X∗ by [(xn)] ∗ [(yn)] = [(xnyn)] = [(ynxn)] = [(yn)] ∗ [(xn)]. It
follows that (X∗, ∗) is a commutative group.

Lemma 4.1. Let (X, ·, LI) be a sequential I-convergence group. Then the
following hold:

(a) ((xn), x) ∈ LI if and only if (xn) ∈ CI [X] and (xn) ∈ x.
(b) If (xn) ∈ CI [X] and (yn) ∈ CI [X], then (xnyn) ∈ CI [X]
(c) If (xn) ∈ CI [X] and (yn) ∈ S[X] with ((xny

−1
n ), e) ∈ LI , then (yn) ∈

CI [X] and (yn) ∈ [(xn)].

Proof. (a) Let ((xn), x) ∈ LI and (xni), (xnj ) be subsequences of (xn). Then
by (SI2), ((xni), x) ∈ LI and ((xnj ), x) ∈ LI . Hence ((xnix

−1
nj ), xx−1) ∈

LI , by (SIG) and so ((xnix
−1
nj ), e) ∈ LI . Therefore, (xn) ∈ CI [X]. Since

((xn), x) ∈ LI , (x, x) ∈ LI , ((xnx−1), xx−1) ∈ LI . Therefore, ((xnx
−1), e) ∈

LI . Hence (xn) ∈ x.
Conversely, let (xn) ∈ CI [X] with (xn) ∈ x. Then for each subsequence

(xni) of (xn), ((xx−1ni ), x) ∈ LI , since (xn) ∈ x. Hence ((xx−1n ), e) ∈ LI . It
follows that ((xn), x) ∈ LI , by (SIC1).

(b) Let (xn) ∈ CI [X] and (yn) ∈ CI [X]. Then for each subsequences (xni)
and (xnj ) of (xn) and subsequences (yni) and (ynj ) of (yn), ((xnix

−1
nj ), e) ∈

LI and ((yniy
−1
nj ), e) ∈ LI . Hence (((xnix

−1
nj )(yniy

−1
nj )),

e) = (((xniyni)(xnjynj )
−1)), e) ∈ LI . Therefore, (xnyn) ∈ CI [X].

(c) Suppose that (xn) ∈ CI [X] and (yn) ∈ S[X] with ((xny
−1
n ), e) ∈

LI . Then by (SIC2), for each subsequences of (xniy
−1
ni ) and (xnjy

−1
nj ) of

(xny
−1
n ) such that ((xniy

−1
ni ), e) ∈ LI and ((xnjy

−1
nj ), e) ∈ LI . Since yniy−1nj =

(x−1ni yni)(xnjy
−1
nj )(xnix

−1
nj ) and xniy−1nj = (xnix

−1
nj )(xnjy

−1
nj ) and (xn) ∈ CI [X].

Hence (xnjy
−1
nj , e) ∈ LI and ((yniy

−1
nj ), e) ∈ LI . Therefore, (yn) ∈ CI [X] and

(yn) ∈ [(xn)]. �
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Theorem 4.1. Let (X, ·, LI) be a sequential I-convergence group. Then
(X∗, ∗) is a commutative group containing (X, ·) as a subgroup.

Proof. First we shall show that (X∗, ∗) is a commutative group.
(1) Since X∗ is non-empty, there exists [(xn)] ∈ X∗. If we take a = [(xn)]

and b = [(xn)], then a ∗ b−1 = [(xn)] ∗ [(xn)]−1 = e where e is the identity
element. Therefore, e ∈ X∗.

(2) Let [(xn)] ∈ X∗. If a = e and b = [(xn)], it follows that a ∗ b−1 =
e ∗ [(xn)]−1 = [(xn)]−1 ∈ X∗.

(3) Let [(xn)], [(yn)] ∈ X∗. Then [(yn)]−1 ∈ X∗.Hence [(xn)]∗[[(yn)]−1]−1 =
[(xn)] ∗ [(yn)] in X∗. So X∗ is closed under the operation ∗.

(4) Let [(xn)], [(yn)] and [(zn)] inX∗. Then [(xn)]∗([(yn)]∗[(zn)]) = [(xn)]∗
([(yn ∗zn)]) = [(xn(ynzn))] = [(xnyn)(zn))] = [(xnyn)]∗ [(zn)]. Therefore, X∗
satisfies associative property.

(5) If [(xn)], [(yn)] ∈ X∗, then [(xn)] ∗ [(yn)] = [(xnyn)] = [(ynxn)] =
[(yn)] ∗ [(xn)]. Therefore, (X∗, ∗) is a commutative group. Hence (X∗, ∗) is
a commutative group containing (X, ·), since (X, ·) is a subgroup of (X∗, ∗).

Now we will construct a sequential I-convergence structure L∗I on X∗. Let
L∗I be the set of all pairs ((αn), α) ∈ S[X∗]×X∗ satisfying the condition that
there exists (xn) ∈ CI [X] such that αmx−1m = α[(xn)]−1 for each m ∈ N. �

Lemma 4.2. If L∗I is a sequential I-convergence structure on X∗, then the
following hold:

(a) For each ((xn), x) ∈ LI , ((xn), x) ∈ L∗I
(b) For each (xn) ∈ CI [X], ((xn), [(xn)]) ∈ L∗I
(c) L∗I satisfies (SIC1) and (SIC2).
(d) If ((αn), α) ∈ L∗I , then αnα−1m ∈ X for each n,m ∈ N.
(e) If ((αn), α) ∈ L∗I and ((βn), β) ∈ L∗I , then ((αnβ

−1
n ), αβ−1), that is,

L∗ satisfied (SIG) .

Proof. (a) Suppose ((xn), x) ∈ LI . By Lemma 4.1(a), (xn) ∈ CI [X] and
(xn) ∈ x. Therefore, for each subsequence (xni) of (xn), ((xx−1ni ), e) ∈ LI .
Therefore, x ∈ [(xn)] implies x[(xn)]−1 = e. Thus, ((xn), x) ∈ L∗I

(b) For each (xn) ∈ CI [X], [(xn)] ∈ X∗. Therefore, ((xn), [(xn)]) ∈ L∗I ,
since xmx−1m = [(xn)][(xn)]−1

(c) Since (x) ∈ CI [X], ((x), x) ∈ L∗I for each x ∈ X. If ((xn), x) ∈ L∗I , then
there exists (yn) ∈ CI [X] such that xmy−1m = x[(yn)]−1 for each m ∈ N. Let
(xni) be a subsequence of (xn). Then xniy−1mi = x[(yni)]

−1 for each mi ∈ N.
Therefore, ((xni), x) ∈ L∗I .

(d) Since ((αn), α) ∈ L∗I , there exists (xn) ∈ CI [X] such that αmx−1m =
α[(xn)]−1 for each m ∈ N. Hence (αnx

−1
n )(αmx

−1
m )−1 = e for each n,m ∈ N.

Thus, αnα−1m = xnx
−1
m ∈ X for each n,m ∈ N.

(e) Since ((αn), α) ∈ L∗I and ((βn), β) ∈ L∗I , there are (xn) ∈ CI [X] and
(yn) ∈ CI [X] such that αmx−1m = α[(xn)]−1 for each m ∈ N and βky−1k =

β[(yn)]−1 for each k ∈ N. Hence (αmβ
−1
k )(xmy

−1
k )−1 = (αβ)−1[(xny

−1
n )]−1
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for each m, k ∈ N. Thus, ((αnβ
−1
n ), αβ−1) ∈ L∗I , by (SIG) and Lemma

4.1(b). �

Lemma 4.3. Let ((αn), α) ∈ L∗I and let (xnm) be a double sequence in
X with [(xnm)] = αn for each n ∈ N. Then there exists a cross-sequence
(xnm(n)) in (xnm) such that (i) [(xnm(n))] = α, (ii) m(n) ≥ n for all n ∈ N
and (iii) [(xnk(n))] = α if k(n) ≥ m(n) for all n ∈ N.

Proof. We show that in particular case αn = α for each n ∈ N. By Lemma
4.2(e), we have (xnmx

−1
1m

) with ((xnmx
−1
1m

), e) ∈ L∗I for each n ∈ N. First we
prove that LI satisfy (∗). (SIC1) obviously. Let ((xn), x) ∈ LI , ((xni), x) ∈
LI and ((xnm , )xn) ∈ LI for each n ∈ N. Choose a cross-sequence (xnm(ni))
in the double sequence (xnm) such that (i) ((xnm(ni)), x) ∈ LI , (ii) mni ≥
ni for all ni ∈ N and (iii) ((xnk(ni)), x) ∈ LI if k(ni) ≥ m(ni) for all
n ∈ N, (SIC3) already satisfied (∗). Thus, LI satisfy (∗). Therefore, there
exists a cross-sequence (xnm(n)

x−1lm(n)
) ∈ CI [X] in (xnmx

−1
lm

) such that (1)

((xnm(n)
x−1lm(n)

), e) ∈ LI , (2)m(n) ≥ n for all n ∈ N and (3) ((xnk(n)x
−1
lk(n)

), e)

∈ LI if k(n) ≥ m(n) for all n ∈ N. Since [(xlm)] = α and L∗I satisfies (SI2),
[(xlm(n)

)] = α so [(xnm(n)
)] = α, by Lemma 4.2(d). Thus, we have a cross-

sequence (xnm(n)
) in xnm such that (i) [(xnm(n)

)] = α, (ii) m(n) ≥ n for all
n ∈ N and (iii) [(xnk(n))] = α if k(n) ≥ m(n) for all n ∈ N.

Now we prove this lemma in general case. Since ((αn), α) ∈ L∗I and by
definition of L∗I , there exists (yn) ∈ CI [X] such that αmy−1m = α[(yn)]−1 for
each m ∈ N. Hence a double sequence (xnmy

−1
n ) in X with [(xpmy

−1
p )] =

α[(yn)]−1 for each p ∈ N. By the above particular case, there exists a
cross-sequence (xn(m)y

−1
n ) ∈ CI [X] such that (i) [(xnm(n)

)] = α[(yn)]−1,

(ii) m(n) ≥ n for all n ∈ N and (iii) [(xnk(n))] = α[(yn)]−1 if k(n) ≥ m(n)

for all n ∈ N. Hence by Lemma 4.2(d), a cross-sequence (xnm(n)
) in (xnm) is

such that (i) α = α[(yn)]−1[(yn)], where α[(yn)]−1 = [(xnm(n)
y−1n )]. There-

fore, α = [(xnm(n)
y−1n )][(yn)] = [(xnm(n)

y−1n )yn] = [(xnm(n)
)], (ii) m(n) ≥ n

for all n ∈ N and (iii) [(xnk(n))] = α if k(n) ≥ m(n) for all n ∈ N. �

Theorem 4.2. Assume that L∗I satisfies the following condition:
(∗∗) Let α ∈ X∗ and (αnm) be a double sequence in X∗ with ((αnm), α) ∈

L∗I for each n ∈ N. It is possible to choose (xn) ∈ CI [X] satisfying the
property that for each p ∈ N, there exists a sequence (xnp(m)

) of (xn) such
that αpmx−1np(m)

= α[(xn)]−1 for all m ∈ N.
Then (X∗, ∗, L∗I) is an I-complete sequential I-convergence group con-

taining (X, ·, LI).

Proof. First, we prove that L∗I satisfies (∗). Let ((αn), α) ∈ L∗I and let (αnm)
be a double sequence in X∗ with ((αnm), αn) ∈ L∗I for each n ∈ N. Since
((αn), α) ∈ L∗I , there exists (xn) ∈ CI [X] such that αmx−1m = α[(xn)]−1 for
each m ∈ N.
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Let α[(xn)]−1 = β. Then by (∗∗), there exists (yn) ∈ CI [X] satisfying the
property that for each p ∈ N, there exists a subsequence (ynp(m)

) of (yn) such
that αpmx−1p y−1np(m)

= β[(yn)]−1 for all m ∈ N. Since (yn) ∈ CI [X] and by
Lemma 4.2(b) and (c), ((yn), [(yn)]) ∈ L∗I and so [(ynp(m))] = [(yn)] for each
p ∈ N and hence by Lemma 4.3, there exists a cross-sequence (ynm(im)) ∈
CI [X] in the double sequence (ynp(m)) such that (1) [(ynm(i(m)))] = [(yn)],
(2) i(m) ≥ m for all m ∈ N and (3) [(ynm(j(m)))] = [(yn)] if j(m) ≥ i(m) for
all m ∈ N.

Thus, ((αmi(m)x
−1
m y−1nm(i(m))), β[(yn)]−1) ∈ L∗I .

That is, α1i(1)x
−1
1 y−1n1(i(1))

, α2i(2)x
−1
2 y−1n2(i(2))

, ...,
I−→ β[(yn)]−1.Hence by Lemma

4.2(e), ((αni(n)), α) ∈ L∗I . Since the cross-sequence ynm(i(m)) satisfies the
above three properties, i(n) ≥ n for all n ∈ N and ((αnj(n)), α) ∈ L∗I if
j(n) ≥ i(n) for all n ∈ N. Therefore, L∗I satisfies (∗).

Therefore, by Theorem 4.1 and Lemma 4.2, (X∗, ∗, L∗I) is a sequential
I-convergence group containing (X, ·, LI).

Next we show that (X∗, ∗, L∗I) is I-complete. Let (αn) be an I-Cauchy
sequence in X∗. Then, by the definition of I-Cauchy, ((αinαjn), e) ∈ L∗I for
each subsequences (αin) and (αjn) of (αn). The proof will be divided into
two cases.
Case 1. There exists a subsequence (αin) of (αn) such that αinα

−1
im

for each
n,m ∈ N. Then by Lemma 4.2(b), (αinαi1)−1 ∈ CI [X] and so

((αinα
−1
i1

), [(αinα
−1
i1

)]) ∈ L∗I .

Therefore, ((αn), [(αin)]) ∈ L∗I , by Lemma 4.2(e).
Case 2. There does not exist a subsequence (αnj ) of (αn) such that αinα

−1
im

for each n,m ∈ N.Without loss of generality, we assume that αnα−1m /∈ X for
each n 6= m ∈ N. Now, we determine a subsequence (αin) of (αn). Let αi1 =
α2, then we can choose αi2 in {α3, α4}. Satisfying (α1α

−1
i1

)(α2α
−1
i2

)−1 /∈ X.
Suppose we choose k − 1 natural numbers im such that 2m−1 � im ≤ 2m

and (αnα
−1
in

)(αmα
−1
im

)−1 /∈ X for each n 6= m ∈ {1, 2, ..., k − 1}.
Now, we show that there exists αik ∈ {α2k−1+1, α2k−1+2, ..., α2k} such

that (αnα
−1
in

)(αkα
−1
ik

)−1 /∈ X for each n ∈ {1, 2, ..., k − 1}. Assume that
there does not exists such αik . Then (αnα

−1
in

)(αkα
−1
p )−1 ∈ X for all p ∈

{2k−1 + 1, 2k−1 + 2, ..., 2k} and for all n ∈ {1, 2, ..., k − 1}. Therefore,
{(αnα−1ni )(αkα

−1
p )−1}{(αnα−1ni )(αkα

−1
q )−1}−1 = αpα

−1
q ∈ X which is a con-

tradiction to αnα−1m /∈ X. Thus, by induction, we have a subsequence (αin)
of (αn) such that (αnα

−1
in

)(αmα
−1
im

)−1 /∈ X for all n 6= m ∈ N.
Since (αn) is I-Cauchy sequence in X∗, ((αnαin)−1, e) ∈ L∗I . Therefore,

by Lemma 4.2(d), (αnα
−1
in

)(αmα
−1
im

)−1 ∈ X for each n,m ∈ N, which is a
contradiction to (αnα

−1
in

)(αmα
−1
im

)−1 /∈ X. It follows that the case 2 can not
occur. Hence (X∗, ∗, L∗I) is an I-complete. �
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Example 4.1. Let LI = {((xn), x) ∈ S[R]×R | (xn) I−converges to x ∈ R
with the usual topology }, where I = {J ⊂ N | d(J) = 0}. Let · be the usual
multiplication on R. Suppose (xn) = ( 1

n) and (yn) = ( 1
n+1). Then (R, ·, LI)

is a sequential I-convergence group and L∗I satisfies (∗∗). Hence (R, ·, LI) is
I-complete.
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