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On Z-Fréchet-Urysohn spaces and sequential
Z-convergence groups

V. RENUKADEVI, P. VIJAYASHANTHI*

ABSTRACT. In this paper, we introduce the concept of sequential
T-convergence spaces and Z-Fréchet-Urysohn space and study their prop-
erties. We give a sufficient condition for the product of two sequential
Z-convergence spaces to be a sequential Z-convergence space.

Finally, we introduce sequential Z-convergence groups and obtain an
Z-completion of these groups satisfying certain conditions.

1. INTRODUCTION

In [4], Hong introduced the notion of Fréchet spaces and sequential conver-
gence groups. It has been discussed and developed by many authors [3, 5].
We try to extend this concept on ideal topological spaces. A non-empty
collection Z of subsets of a set X is said to be an ideal on X |[7] if it satisfies
the following two conditions:

(i) A€cZTand BC A= Bel

(i) AcZand BeZ=AUB¢cTZ.

A non-trivial ideal Z is called admissible 2] if and only if Z D {{z} | x €
X}. Several examples of nontrivial admissible ideals may be seen in [6].
Let (X,7) be a topological space. A sequence (x,) in X is said to be
Z-convergent to xg € X |[7] if for any non-empty open set U containing

zo, {n € N |z, ¢ U} € Z. It is denoted by (z,) L, 2o and 2 is called
an Z-limit of the sequence (z,,). A topological space (X, 1) is Z-Fréchet or
I-Fréchet-Urysohn space [9] if every point in the closure of a subset A of X
is a Z-limit of a sequence of A. A mapping f: (X,7) — (Y, 0) is said to be
pseudo open |2] if whenever f~!(y) C U with U open in X, y € int(f(U)).
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Let ACN. Put A(n) ={k | k <n,k € A}. Then we call (A) = lim inf

n—0o0

A = A
[A(n)] and 0(A) = lim sup [A(n)] , the lower and upper asymptotic density
n n

n—oo
[8] of A, respectively. If §(A) = §(A), then d(A) = §(A) = lim |A(n)] i

n—00 n

called the asymptotic density (or natural density) of A.

This paper consists of four sections with new results. In Section 2, we
introduce the concept of sequential Z-convergence spaces, Z-Fréchet-Urysohn
spaces and study their properties. Recall that Z-Fréchet and I-sequential
spaces are generalizations of statistical versions of Fréchet-Urysohn spaces
and sequential spaces considered in [1] and [11]. In Section 3, we give a
sufficient condition for the product of two sequential Z-convergence spaces
to be a sequential Z-convergence space. In Section 4, we introduce sequential
Z-convergence groups and an Z-completion of these groups satisfying given
condition (). Throughout this paper, we consider only an admissible ideal.
The following lemma will be useful in the sequel.

Lemma 1.1. [10]| Let f : X — Y be a quotient mapping and X be an I-
Fréchet-Urysohn space. Then'Y is an Z-Fréchet-Urysohn space if and only
if f is pseudo open.

2. SEQUENTIAL Z-CONVERGENCE SPACES

Let X be a non-empty set and S[X] be the set of all sequences in X. We
use the notation z,, = z for ((xn),z) € Lz. A non-empty subfamily Lz of
S[X] x X is called a sequential Z-convergence structure (SZC) on X if it
satisfies the following properties:

(SZC1) For each z € X, ((x),x) € Lz, where (z) is the constant sequence
whose n-th term is = for all indices n € N,

(SZC2) If ((zp),x) € Lz, then ((zn,),x) € Lz for each subsequence (z,,) of

(SZC3) Let x € X and A C X. If ((zy),x) ¢ Lz for each (z,,) € S[A], then
((yn),y) ¢ Lz for each (y,) € S[{y € X|((zn),y) € Lz for some
(zn) € S[A]}].
If a sequential Z-convergence structure Lz on X is given, the pair (X, Lz)
is called a sequential Z-convergence space. Hereafter, we use the notation

SCZ[X] for the set of all sequential Z-convergence structures on X.
Let (X, 7z) be a Z-Fréchet-Urysohn space and let L,, denote the set of all

pairs ((z,),z) € S[X] x X such that (z,) L zin (X, 771).

(i) Suppose for each x € X, then ((x),x) € L,,, where (x) is constant
sequence.
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(ii) Suppose ((zn),z) € Ly, then there exists a subsequence (z,, ) of
(xy) such that ((zy,),z) € Ly,
iii) Let x € X and A C X. Suppose that ((z,),x L, for each
T
() € S[A], then ((yn),y) ¢ L, for each

(yn) € SH{y € X[((2n),y) € Ly, for some (z,,) € S[AJ}].

Then, it is clear that L,, € SZC[X] and two topological spaces (X, 77)
and (X, L., ) are precisely same, since (X, 77) is a Z-Fréchet-Urysohn space.
Hence every Z-Fréchet-Urysohn space is a sequential Z-convergence space.
And, for each L7 € SZC[X], define a mapping cr, of the power set P(X)
of X into itself as follows:

cr,(A) ={z € X|((zn),x) € Lz for some (z,) € S[A]}
The following Lemma 2.1 gives the properties of the operator cr,,.

Lemma 2.1. Let (X,7) be a topological space and A,B C X. Then the
following hold.
(a) cr,(0) =90.
(b) ACcr(A).
( ) CLI(CLZ( )) C CLZ(A)'
(d) AC B=cp,(A) Ccr,(B).
(€) co(AUB) = c1y(4) Ucry(B).

Proof. (a) cr,(0) =0 is clear.

(b) Suppose = € A, and consider (z,,) = (z,z, ..., T).

Then (z,) € S[A] and ((xy,),x) € Lz. Therefore, x € ¢, (A).

(c) Suppose x € cr,,(cr,(A)), then there exists a sequence (x,,) € S[cr,(A)]
such that ((z,),z) € Lz. Suppose that x ¢ cr,(A). Then for each (y,) €
S[A], ((yn),z) ¢ Lz. By (SZC3), ((zn),z) ¢ Lz, which is a contradiction.
Therefore, x € ¢, (A). Hence ¢, (cr,(A)) C cr,(A).

(d) Suppose z € cr,(A), then ((zy),x) € Lz for some (z,) € S[A]. Since
A C B, (z,) € B and so x € cr,(B). Therefore, cr,,(A) C cr,(B).

(e) We have ¢, (A)Ucr,(B) Ccr,(AUB), by (d). Let z € ¢, (AU B).
Then ((xy,),z) € Lz for some (z,,) € AUB. Note that either A or B contains
infinitely many terms of (x,). If A contains infinitely many terms of (),
then there exists a subsequence (xy,) of (z,) in A with ((xpm),z) € Lz,
by (SZC2). Therefore, x € cr,(A). Similarly, z € cr,(B). Hence z €
cr;(A)Ucr,(B). Thus, ¢, (AU B) = cr,(A) Ucr,(B). O

Thus, ¢, is a Kuratowski closure operator on X and (X, cr,) is a Z-
Fréchet-Urysohn space as it satisfies the above properties. Let £(cr,,) denote
the set of all pairs ((z,),x) € S[X] x X such that (x,) L 2 in (X,cry)-
By the following Example 2.1, Lz ; L(cr,), in general. Hence not every
sequential Z-convergence space (X, L7) need be a Z-Fréchet-Urysohn space
even if (X, L) determines a Z-Fréchet-Urysohn space (X, cr,) as above.
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Example 2.1. Let Q be the set of all rational numbers and Lz = {((x),z)|z €
QtU{((zn),z) € S[Q] x Q|(zn) = Q} with the usual topology and (x,)

is either increasing or decreasing }.

Let (z,) = (2) and (z) = (3, 3, -, 3, ...)- Then there is an open set U of
0 such that {n|(z,) = 2 ¢ (UNQ)} € T where Z = {J C N | d(J) = 0}.
Therefore, ((z),3) € Lz satisfy (SZC1). Choose (z,) = (3,3, ...,) of (zn).
Then ((zn,,0) € Lz satisty (SZC2). Suppose (z,) = (—1,1,—1,...,) does
not Z-converge in Lz but (y,) = {1 (1,1,...,) L 1 for some (xn) € S[Q]}.
Therefore, (SZC3) is satisfied. Thus, Ly € SZC[Q] but Lz & L(cr,) =

{((zn),0) € [SQ] x Q| (zn) %, 0 in Q with the usual topology}.

Lemma 2.2. Let Ly € SIC[X] and x € A C X. If A is a neighbourhood
of  in (X,cr,), then for each ((zn,),z) € Lz, there is an open set U in
(X, cr,) containing x such that {n | x, ¢ U} € T.

Proof. Let A be a neighbourhood of z in (X, ¢r,) and ((x,,),x) € Lz. Then
there exists an open set U in (X, cr,) such that x € U C A. It follows
that ¢z, (X\U) = X\U, and there does not exist (y,) in X\U such that
((yn),x) € Lz, by the definition of c¢r,. Now we show that {k € N | z}, €
X\U} e Z. If {k € N | z, € X\U} ¢ Z, then there exists a subsequence
(xn;) of (z) in X\U. Since ((z),z) € Lz, ((xn,;),x) € Lz, which is a
contradiction. Therefore, {k € N | 2, € X\U} € 7. O
Theorem 2.1. If L7 € SIC|[X], then the following hold:

(a) Lz C L(crg)-

(b) cLy = ecer,)-
Proof. (a) Let ((x,),z) € Lz. Then by Lemma 2.2, for each neighborhood
Aof z in (X,cr,), there is an open set U in (X, ¢z, ) such that {n | z,, ¢
U} € Z. Therefore, ((zy),z) € L(cr,).

(b) Let A be a non-empty subset of X. Then by Lemma 2.1(b) and (d),
crz(A) C cgey,)(A). Conversely, let z € cg e, )(A). Then ((zn), ) € L, )
for some (x,) € S[A]. By the definition of Lic,,)s (@n) L 2in (X,cr;)-
Therefore, x € cr,(A). O

Theorem 2.2. For each Z-Fréchet-Urysohn topology 7 on X, L., = ,C(CLTI)
& STCIX], where Ly, = {((n),2) € SIX] x X | () B 2 in (X, 72)}.

Proof. Note that ¢y, is the closure operator for (X, 7z). Since 77 is an Z-
Fréchet-Urysohn topology and L., € SZC[X], Ly, C L(cr, ), by Theorem
2.1. U

Corollary 2.1. Let Fr[X] denote the set of all Z-Fréchet-Urysohn topologies
on X and TSI[X| = {L(cL,) | Lz € SZC[X]}. Then partially ordered sets
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Fr[X] and TSIC[X] endowed with the set inclusion order are dual isomor-
phic under the correspondence 77 — L.

Proof. Since ¢y, is the closure operator for (X, 17), Lr, = L;;, implies
71, = T1,. Hence this correspondence is one-to-one. Take any Lz in STC[X]
and let Ter, be the Z-Fréchet topology on X with the closure operator cy,, .

Then Lr, = L(cr,). Hence this correspondence is onto. O
z

Theorem 2.3. There exists an one-to-one correspondence between the set
of all Z-Fréchet-Urysohn topologies on a set X and {cr, | Lz € STC[X]}.

Proof. Follows from Corollary 2.1. U

3. PRODUCT OF SEQUENTIAL Z-CONVERGENCE SPACES

In general, the product of two sequential Z-convergence spaces need not
be a sequential Z-convergence space, but we give a sufficient condition for
the product of two sequential Z-convergence spaces to be a sequential Z-
convergence space. The following Example 3.1 shows that the product of
two sequential Z-convergence spaces is not a sequential Z-convergence space.

Example 3.1. Let X = R/Z, R is the real line (equipped with the usual
topology) with the integers identified and let I = [0,1] be the closed unit
interval in the real line. Since Z = {J C N | d(J) = 0} and every point in the
closure of I is an Z-limit of a sequence of points of I, I is Z-Fréchet-Urysohn
space. A quotient map ¢ : R — X is pseudo-open. Hence by Lemma 1.1, X
is an Z-Fréchet-Urysohn space. For eachn € N, let A, = {(n—#, 1) | k € N}
and let A = [J{A, mod n € N}. Then (0,0) € A, but no sequence in A
Z-converging to (0,0). Hence X X I is not Z-Fréchet-Urysohn. Next we show
that X x I is not a sequential Z-convergence space. For each n,k € N, let
Zn, = (N — k%rl,%) and let A = {2, | n,k € N}. Then for each n € N,
(Zny) EN (0,1) in X x I and the sequence ((0, 1)) EN (0,0) in X x I. But
there does not exist a (2, ) in A such that (2, ) EN (0,0). Therefore, X x I
is not a sequential Z-convergence space.

The following condition (x) is sufficient for the product of two sequential
Z-convergence spaces to be a sequential Z-convergence space.

(x) Let ((zp),x) € Lz and let ((z,,),2n) € Lz for each n € N. It is
possible to choose a cross-sequence (zy,,(,)) in the double sequence (z,, )
such that (i) ((zp,,n)),z) € Lz, (ii)) m(n) > n for all n € N and (iii)
((Tny(n))s ) € Lz if k(n) = m(n) for all n € N.

(%) implies (SZC3) Let ((z,),x) ¢ Lz for all (x,) € A and (y,) € S[B]
where B = {y € X|((Xy),y) € Lz for some (x,) in A}. Then y; € B for
all i« € N and for each 4, there exists (x,,) € S[A] such that ((xy,),y:) €
Lz. By hypothesis, ((zn,),x) ¢ Lz for all i. Suppose ((yn),y) € Lz, then
(1) ((Tnyn))s®) € Lz (7)i(n) > n for all n and (iil) ((zn,(n)),z) € Lz if
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k(n) > m(n) for all n € N, which is a contradiction to ((x,,),z) ¢ Lz for all
i. Therefore, ((yn),y) ¢ Lz.

Example 3.2. Let Lz, = {((#s),z) € S[Q] x R | (v,) Z—converges to x
in the real line R}. By Example 2.1, (R, Lz,) is a sequential Z-convergence
space satisfying (), but not an Z-Fréchet-Urysohn space

Theorem 3.1. Let (X, Lz, ) and (Y, Lz, ) be any two sequential Z-convergence
spaces satisfying (x) and let

LIX X LIY = {((‘rnayn)v (x,y)) | ((mn)vr) € LIX and ((yn)ay) € Lzy}

Then (X x Y, Lz, x Lz, ) is a sequential Z-convergence space satisfying (x).

Proof. Suppose that (z,) = (x), (yn) = (y). Then (X x Y, Lz, X Lz, )
satisfies (SZC1). Choose the subsequences (zy,) and (yy,) of (z,,) and (yn),
Lz, x Lz, = {((@nis yni)s (2,9) | ((2n,),2) € Lz, and ((Yni),y) € LZY}'
Thus, Lz, x Lz, satisfies (SZC2). Since (x) implies (SZC3), it is enough to
show that Lz, x Lz, satisfies (x).

Let ((#n,yn), (z,y)) € Lz X Lz, and let ((Zn,,, Yn,), (Tn,yn)) € Ly X
Lz, for each n € N. Then, by the definition of Lz, x Lz,, ((zn),z) €
LZX?((yn)vy) € Lz, (T, )s Tn) € Lz, for each n € N and ((ym)7yn) €
Lz, for each n € N. Since (X, Lz, ) and (Y, Lz, ) satisfy (x), there are two
cross-sequence T (n) and ¥y, () in the double sequences (vp,,) and (yy,),
respectively, such that (i) ((7y,,(n)), ) € Lzy and ((Ypn,(n)),vy) € Lz, and
those cross-sequences also satisfy the properties (ii) and (iii), respectively.

Let p(n) = maz {m(n),l(n)} for each n € N. Then ((zy,,(n)),*) € Lz
and ((Yn,(n)),¥) € Lz, , and we obtain a cross-sequence (z,,(n), Yn,(n)) in the
double sequence (zn,, , yn,) such that (i) ((zn,(n)Yn,m))s (2,9)) € Lz X L1y;
(ii) p(n) > n for all n € N; (iil) ((Zn,(n), Yny(n))> (¥, ), for all n € N. O

4. SEQUENTIAL Z-CONVERGENCE GROUPS

Definition 4.1. A sequential Z-convergence space (X, Lz) is called Haus-
dorff if L satisfies the following property:
If ((zn),2) € Lz and ((xy,),y) € Lz, then z = y.

Definition 4.2. Let (X, L7) be a Hausdorff sequential Z-convergence space
satisfying (%) and let - be a commutative group operator on X. The triple
(X, -, L7) is called a sequential Z-convergence group if it satisfies the follow-
ing property:

(SZG) For each ((w,),z) € Lz and ((yn),v) € Lz, ((zay, ), 2y~ L) € Lz.

Remark 4.1. Define a mapping ¢ of X x X onto (X,-, Lz) by taking
d(x,y) = zy~ ! for each (z,y) € X x X. Then (SZG) is equivalent to the
following;:

(SZG") For each ((zn,yn), (z,9)) € Lz X Lz, (¢(xn, yn), ¢(x,y)) € L7.
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Let (X,-, Lz) be a sequential Z-convergence group. A sequence (z,) €
S[X] is called Z-Cauchy if for each subsequences (z,;) and (zn;) of (z,),
((xnlmgj ),€) € Lz where e is the identity element of the group (X,-). Let
Cz[X] denote the set of all Z-Cauchy sequences in (X, -, L7). A sequential
Z-convergence group (X, -, L7) is called Z-complete if for each (z,) € Cz[X],
((xn),z) € Lz for some = € X. Let (X, -, L7) be a sequential Z-convergence
group and let ~ be an equivalence relation on Cz[X] defined by (x,,) ~ (yn)
if and only if ((xy, ygjl), e) € Lz for each subsequence (zy,) of (z,) and each
subsequence (yn;) of (yn). We denote the class of all Z-Cauchy sequences
which are equivalent to an (x,) € Cz[X] by [(z)]-

In particular, for each constant sequence (x), x will be used for the equiv-
alence class [(z)]. Let X* = {[(zy)] | () € Cz[X]} and ¢ : X — X* defined
by ¢(x) = x for all x € X. Then ¢ is injective and if (X, -, L7) is Z-complete,
then ¢(x) = x for each (z,,) € Cz[X]. Thus, ¢ is bijective. Define an (group)

operator * on X* by [(zn)] * [(yn)] = [(znyn)] = [(ynn)] = [(yn)] * [(zn)]. It
follows that (X*,*) is a commutative group.

Lemma 4.1. Let (X,-, L) be a sequential Z-convergence group. Then the
following hold:

(a) ((zn),x) € Lz if and only if (xy,) € Cz[X] and (z,) € .
(b) If (zn) € Cz[X] and (yn) € Cz[X], then (zpyn) € Cr[X]
(c) If(:rn) € Cz[X] and (yn) € S[X] with ((zny,; '), e) € Lz, then (y,) €
Cz[X] and (yn) € [(zn)].

x)

Proof. (a) Let ((z),x) € Lz and (xy,), (x,,) be subsequences of (z,,). Then
by (SZ2), ((wn,;),x) € Lz and ((wn,),r) € Lz. Hence ((xnix,jjl), rx~1) €
Lz, by (SZG) and so ((:cnix;jl),e) € Lz. Therefore, (z,,) € Cz[X]. Since
((zn),x) € Lz, (z,2) € Lz, ((zpa~ 1Y), 22~ ) € Lz. Therefore, ((z,z71),e) €
Lz. Hence (z,,) € x.

Conversely, let (z,,) € Cz[X] with (x,) € z. Then for each subsequence
(zn,) of (zn), ((xa;!),z) € Lz, since (x,) € . Hence ((zz,'),e) € Lz. It
follows that ((z), ) € Lz, by (SZC1).

(b) Let (z,,) € Cz[X] and (y,,) € Cz[X]. Then for each subsequences (xy,;)

1

and (z,;) of (7,) and subsequences (y,,) and (yn,) of (yn), ((:Bm:z:nj ).€e) €

Lz and ((yn,)),€) € Lz. Hence ((n,25))(yn5r).
e) = (((a:niyni)(:cnjynj)*l)), e) € Ly. Therefore (nyn) € Cr[X].

(c) Suppose that (z,) € Cz[X] and (y,) € S[X] with ((z,y, '), e) €
Lz. Then by (SZC2), for each subsequences of (z,y,) and (xnjygjl) of
(xnyrjl) such that ((xmyr;l% e) € LI and ((xn] yrjl)a e) € Lz. Since y'fliy’rjjl =
(‘T;}yni)(ang‘ y;jl)(xnzxnj ) and xmyn (xnlxnjl)(xnj yn ) and (.’En) € CZ[X]
Hence (xnjy;jl, e) € Lz and ((ymynj ), e) € L. Therefore (yn) € Cz[X] and

(yn) € [(xn)] Il
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Theorem 4.1. Let (X,-,Lz) be a sequential Z-convergence group. Then
(X*, %) s a commutative group containing (X,-) as a subgroup.

Proof. First we shall show that (X*, %) is a commutative group.

(1) Since X* is non-empty, there exists [(z,)] € X*. If we take a = [(z,)]
and b = [(z,,)], then a x b=! = [(z,)] * [(,)] "' = e where e is the identity
element. Therefore, e € X*.

(2) Let [(x,)] € X*. If a = e and b = [(z,,)], it follows that a x b~! =
e [(zn)] 7! = [(zn)]F € X*.

(3) Let [(za)], [(4n)] € X*. Then [(y)] " € X*. Hence [(z)#{[(ya)] ]~ =
[(zn)] * [(yn)] in X*. So X* is closed under the operation .

(4) Let [(0)], [(ga)] and [(20)] in X" Then [(z)J+([(g)][(z0)]) = [(2)]
([(wn*20)]) = [(#n(Ynzn))] = [(@nyn) (z0))] = [(#nyn)] * [(20)]. Therefore, X
satisfies associative property.

(5) It [(zn)], [(yn)] € X7, then [(zn)] * [(yn)] = [(@nyn)] = [(ynwn)] =
[(yn)] * [()]. Therefore, (X*,*) is a commutative group. Hence (X*,x) is
a commutative group containing (X, ), since (X, -) is a subgroup of (X*, x).

Now we will construct a sequential Z-convergence structure L7 on X*. Let
L% be the set of all pairs ((ov,), ) € S[X*] x X* satisfying the condition that
there exists (z,,) € Cz[X] such that apx,,! = a[(z,)] ! foreachm € N. [

Lemma 4.2. If L7 is a sequential Z-convergence structure on X™, then the

following hold:

(a) For each ((zn),x) € Lz, ((zy),z) € L}

b) For each (xn) € C[X], ((xn), [(zn)]) € L7

c) L} satisfies (SZC1) and (SICQ)

d) If ((« ) a) € L%, then anayt € X for each n,m € N.

) If ((an), @) € L7 and ((Bn), B) € L, then ((anfBy"),a871), that is,
L* satzsﬁed (SIG) .

Proof. (a) Suppose ((xy),x) € Lz. By Lemma 4.1(a), (z,) € C’I[X] and
(zn) € x. Therefore, for each subsequence (zy,) of (zn), ((xz,'),e) € Lz.
Therefore, € [(z,,)] implies x[(z,)]~! = e. Thus, ((z,), ) € L%

(b) For each (x,,) € Cz[X], [(zn)] € X*. Therefore, ((xn),[(zn)]) € L%,
since Ty, = [(2n)][(2n)]

(c) Since (z) € Cz[X], ((z),z) € L% foreach x € X.If ((z,), ) € L%, then
there exists (y,) € Cz[X] such that z,,y,,! = z[(y,)]~! for each m € N. Let
(zn,) be a subsequence of (z,). Then @,y = x[(yn,)] " for each m; € N.
Therefore, ((xy,),z) € L.

(d) Since ((an), @) € L%, there exists (z,,) € Cz[X] such that ay,z;,! =
af(w,)] 7! for each m € N. Hence (a2, 1) (amz;,) ™! = e for each n,m € N.
Thus, apa;,! = xpx,,! € X for each n,m € N.

(e) Since ((a), ) € L% and ((Br), ) € L%, there are (x,) € Cz[X] and
(yn) € Cz[X] such that a,,z,! = a[(azn)] L for each m € N and ﬂkyk

Bl(yn)]~! for each k € N. Hence (amﬁk )(:Umyk )7t = (aB) (zny, ]!
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for each m,k € N. Thus, ((an8,'),aB8™1) € L%, by (SIG) and Lemma
4.1(b). O

Lemma 4.3. Let ((an), ) € L3 and let (xy,,) be a double sequence in
X with [(xn,,)] = an for each n € N. Then there exists a cross-sequence
(Tn,(n)) 0 (Tn,,) such that (i) [(zy,,, )] = @, (i) m(n) > n for alln € N
and (iii) [(Tp,(n))] = @ if k(n) = m(n) for alln € N.

Proof. We show that in particular case «a,, = « for each n € N. By Lemma
4.2(e), we have (wnmxl_wll) with ((acnmml_"ll), e) € L% for each n € N. First we
prove that Lz satisfy (x). (SZC1) obviously. Let ((xy,),x) € Lz, ((zp,),z) €
Lz and ((wp,,,)rs) € Lz for each n € N. Choose a cross-sequence (Zy,,, (ns))
in the double sequence (wp,,) such that (i) ((xp,,(ni)) =) € Lz, (ii) mp; >
ni for all ni € N and (iii) ((¥p, (ni)),z) € Lz if k(ni) > m(ni) for all
n € N, (SZC3) already satisfied (x). Thus, Lz satisfy (). Therefore, there
exists a cross-sequence (wnm(mxl_w}(n)) € Cz[X] in (xnmxl_ml) such that (1)
((:L‘nm(n):r:fnin)), e) € Lz, (2) m(n) > nforalln € Nand (3) ((:L‘nk(n):rl;?n)), e)
€ Lz if k(n) > m(n) for all n € N. Since [(2;,,)] = o and L% satisfies (SZ2),
[(z1,,,)] = @ s0 [(zn,,,,)] = a, by Lemma 4.2(d). Thus, we have a cross-
sequence (zn,, ) in Zn,, such that (i) [(zn,,, )] = @, (i) m(n) > n for all
n € N and (iii) [(zn,,,)] = a if k(n) > m(n) for all n € N.

Now we prove this lemma in general case. Since ((ay),«) € L% and by
definition of L%, there exists (y,) € Cz[X] such that apy,,' = af(yn)] ™" for
each m € N. Hence a double sequence (p,,y,') in X with [(z,,,y,")] =
af(yn)]~! for each p € N. By the above particular case, there exists a
cross-sequence (xn(m)ygl) € Cz[X] such that (i) [(a:nm(n))] = af(yn)] 7},
(ii) m(n) > n for all n € N and (iii) [(zn,,,)] = af(yn)] 7t if k(n) > m(n)
for all n € N. Hence by Lemma 4.2(d), a cross-sequence (2, ) in (Zn,,) is
such that (i) @ = a[(yn)] " (yn)], where o[(yn)]™" = [(n,,, ¥ ")]- There-
fore, o = [(%n,y (Y M)l = (@ ¥ I¥n] = (20,5 (i) m(n) > n
for all n € N and (iii) [(xnk(n))] =« if k(n) > m(n) for all n € N. O

Theorem 4.2. Assume that L} satisfies the following condition:

(%) Let a € X* and (onm) be a double sequence in X* with ((omm), ) €
L% for each n € N. It is possible to choose (x,) € Cr[X] satisfying the
property that for each p € N, there exists a sequence (xnp(m)) of (xy,) such

that apmaz;pl(m) = a[(z,)]7t for all m € N.
Then (X*,*,L%) is an Z-complete sequential I-convergence group con-

taining (X, -, LT).

Proof. First, we prove that L} satisfies (x). Let ((a,), o) € L% and let (am)
be a double sequence in X* with ((anm), ) € L% for each n € N. Since
((an), @) € L%, there exists (z,,) € Cz[X] such that ay,z;,,! = af(z,)] ! for
each m € N.
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Let af(z,)] 7! = B. Then by (x*), there exists (y,) € Cz[X] satisfying the
property that for each p € N, there exists a subsequence (ynp(m)) of (yn) such
that ap,,z, yn = B[(yn)]~! for all m € N. Since (y,) € Cz[X] and by
Lemma 4.2(b) and (¢). (9). ()] € L and 50 (9 my)] = [(9)] for each
p € N and hence by Lemma 4.3, there exists a cross-sequence (¥y,, (im)) €
Cz[X] in the double sequence (Y, (m)) such that (1) [(Yn,,(im)))] = [(yn)],
(2) i(m) = m for all m € N and (3) [(Yn,,(j(m)))] = [(yn)] if j(m) > i(m) for
all m € N.

Thus? ((amz(m)xrinly;:l(z(m))):ﬁ[(yn)]il) € L:*Z
That is, 0612-(1)351_19,:11(,-(1)), agi(Q)xgly;;(i(Z)), s EN B[(yn)]~!. Hence by Lemma
4.2(e), ((ap;(ny), @) € L7. Since the cross-sequence ¥, (i(m)) Satisfies the
above three properties, i(n) > n for all n € N and ((ay, ), @) € L7 if
j(n) > i(n) for all n € N. Therefore, L} satisfies (x).

Therefore, by Theorem 4.1 and Lemma 4.2, (X*,*, L}) is a sequential
Z-convergence group containing (X, -, L7).

Next we show that (X*,*, L%) is Z-complete. Let (a;) be an Z-Cauchy
sequence in X*. Then, by the definition of Z-Cauchy, ((a;,«;,),e) € L} for
each subsequences (,) and (a;j,) of (ay). The proof will be divided into
two cases.

Case 1. There exists a subsequence (s, ) of (a,) such that a;, ;! ~ for each

n,m € N. Then by Lemma 4.2(b), (a;, a;;) "' € Cz[X] and so

(e, 05,1, [, 07 )]) € LT

Therefore, ((ay), [(,)]) € L%, by Lemma 4.2(e).
Case 2. There does not exist a subsequence () of (o) such that a;, a;ﬂl
for each n, m € N. Without loss of generality, we assume that a,a;,,' ¢ X for
each n # m € N. Now, we determine a subsequence («, ) of (o). Let a;, =
ag, then we can choose a;, in {as, as}. Satisfying (0410[;11)(0(2047;1)_1 ¢ X.

Suppose we choose k — 1 natural numbers i, such that gm—1 S i <27
and (oznozi_nl)(ama D=1 ¢ X for each n #m € {1,2,....k — 1}.

Now, we show that there exists a;, € {agr- 1+1,062k 149, ok } such
that (0471041-21)(c)qrgai_kl)*1 ¢ X for each n € {1,2,....k — 1}. Assume that
there does not exists such «;,. Then (anai_nl)(aka H=le X forall p €
{2k=1 11,281 12 ... 2%} and for all n € {1,2,. 1} Therefore,
{(ana;})(akagl)_l}{(anagil)(aka H-1y-1 = apa 1€ X which is a con-
tradiction to a,,! ¢ X. Thus, by 1nduct10n we have a subsequence («;,)
of (o) such that (anai_nl)(ama )yl ¢ X for all n 75 m € N.

Since (o) is Z-Cauchy sequence in X*, ((anay,),e) € L. Therefore,
by Lemma 4.2(d), (ana-_l)(ozma ) e X for each n,m € N, which is a
contradiction to (ana;nl)(amoz ) ¢ X. It follows that the case 2 can not
occur. Hence (X*, %, L%) is an 7- complete. O
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Example 4.1. Let Lz = {((zn),z) € S[R] xR | (z,) Z—converges to x € R

with the usual topology }, where Z = {J C N | d(J) = 0}. Let - be the usual

multiplication on R. Suppose (z,) = (1) and (y,) = (%H) Then (R, -, L7)

n
is a sequential Z-convergence group and L satisfies (xx). Hence (R, -, L7) is

Z-complete.
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